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1 | INTRODUCTION

The rapidly growing international interest in the work of
Danish artist Vilhelm Hammershoi (1864-1916) among
scholars and the public has resulted in an increased

Annette S. Ortiz Miranda

| Anne Haack Christensen

Abstract

The goal of the Vilhelm Hammershgi Digital Archive project of the National
Gallery of Denmark is to understand the Danish painter Vilhelm
Hammershei's painting methods by compiling a comprehensive amount of
data on his use of materials and working methods through visual and technical
examination of a large number of his paintings, and to make this information
available to researchers and the public in an open access digital resource. A
clear understanding of the full suite of pigments across the paintings requires
determination of which materials comprise the palettes of the ground and
paint layers. Scanning electron microscopy/energy-dispersive x-ray spectros-
copy and macro x-ray fluorescence spectroscopy were selected as the key ana-
lytical techniques due to their ability to yield chemical information at the
elemental level. This article presents a method that combines unsupervised
machine learning and cluster analysis techniques, to automatically reduce the
large x-ray spectral data to sets of distinct clusters that share similar spectra,
making it possible to identify materials more precisely. The proposed method
allowed the grouping of materials by chemical composition, which enabled an
optimal understanding of the pigments used in the ground layers sampled
from a large number of paintings as well as in the paint layer examined at the
surface of one selected painting. The method performed well when compared
with other well-established data mining techniques, and it helped reduce the
time necessary for the interpretation of the analytical results significantly.
Through this approach, a basis for a more nuanced view of Hammershei's
artistic idea and technical development will be generated.
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attention to the artist's working methods and technical
development by museums, researchers and collectors.
However, little is known about the technique and mate-
rial aspects of Hammershei's art. The 5-year Vilhelm
Hammershoi Digital Archive (ViHDA) project of the
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National Gallery of Denmark (Statens Museum for
Kunst, SMK) aims at investigating the formation and evo-
lution of Hammershoi's working methods, materials and
techniques through technical and scientific documenta-
tion of his works.

Vilhelm Hammershei was Denmark's internationally
best-known artist around 1900." Today, museums world-
wide increasingly collect his paintings, and exhibitions of
his works have attracted great interest. Despite a consid-
erable body of art historical research into Hammershoi's
oeuvre and iconography compiled through many years,
knowledge about the technical aspect of his art such as
his painting and drawing techniques, as well as his
choice and use of materials, is limited. When looking at
Vilhelm Hammershei's works with their toned down col-
ours, many will be left with the perception that the artist
worked in a few shades of grey supplemented with a
handful of warmer brownish colours. In reality, prelimi-
nary analyses performed at SMK as part of the VIHDA
project suggested a more complex and sophisticated tech-
nique and choice of materials, with significant develop-
ment throughout the artist's career. To understand
Hammersheoi's use of pigments, the investigation within
the ViHDA project comprises visual and technical exami-
nation, imaging, scientific analyses and registration of
paintings from Danish and foreign public and private col-
lections. The project is an interdisciplinary collaboration
between conservators, heritage scientists, art historians
and imaging experts. It will result in an open access digi-
tal archive where data, images and other results collected
during the project will be made available to scholars and
the public.

The numerous advanced scientific methods used for
the project include chemical imaging of paintings by
macro x-ray fluorescence (MA-XRF) spectroscopy, and
analysis of samples by scanning electron microscopy
coupled with energy-dispersive x-ray (SEM-EDX) spec-
troscopy. Both techniques can map the elements in the
paint and ground layers, making it possible to identify
the chemical composition of Hammershoi's paints in the
individual artworks and paint samples. During the first
2 years of the project, 62 paintings produced between
1884 and 1911 have been inspected by SEM-EDX and
MA-XRF spectroscopies. Given the large number of
x-ray spectra that are routinely measured on the sam-
ples and on the paintings, both the SEM-EDX analyses
and the MA-XRF scans are resulting in an enormous
amount of data that is destined to grow considerably
over the course of the project. Identifying pigments and
understanding their use by the artist based on x-ray
spectral data requires hours of interpretation of scien-
tific results. The standard way to analyse this data is, on
the one hand, to examine individual x-ray spectra

measured at specific areas, and, on the other hand, to
produce and compare selected single-element maps.
These methods are certainly suitable for small sets of
data, while they can become challenging and can lead
to incorrect or incomplete interpretations when working
with very large collections of data and complex material
compositions. Therefore, a process of extracting and dis-
covering patterns in those large data sets is essential. In
the field of heritage science, advanced data mining
methods have been applied to x-ray spectral data
before.”* However, those methods often require the
analyst to identify crucial parameters in advance, in
order to optimise the performance of the analysis. The
aim of this work was to develop and test a combination
of data mining methods based on unsupervised machine
learning and cluster analysis that require little to no
parameter tuning. This way, the EDX and the XRF spec-
tral data could be automatically reduced to sets of dis-
tinct clusters that share similar spectra, making it
possible to identify materials more precisely and deduce
the compositions of the examined ground and paint
layers. The present article illustrates this approach in a
twofold manner: through the examination of the EDX
spectra that have been collected from 66 samples, and
through the analysis of the MA-XRF spectral imaging
data cube of one painting in the collection of SMK that
was selected as a case study.

2 | MATERIALS AND METHODS
2.1 | Sample analysis by optical
microscopy and SEM-EDX

One or two representative samples of the ground layer
were collected from the edges of each of the 62 paintings,
for a total of 66 samples. All samples were embedded in
Technovit 2000 LC light curing resin from Kulzer Tech-
nik (Wehrheim, DE) and prepared as cross sections by
polishing the transverse plane. A Leica DM2500 M opti-
cal microscope (maximum 100x) coupled with a Leica
DMC4500 camera was used to examine the samples visu-
ally and to photograph the cross sections in both reflected
visible light (dark field) and ultraviolet light. Afterwards,
elemental analyses on the cross sections were carried out
at the scientific laboratory of the Royal Danish
Academy—Institute of Conservation in Copenhagen,
using a Hitachi S-3400N scanning electron microscope
equipped with an energy dispersive x-ray spectrometer.
The spectrometer is a Bruker Quantax 200 EDX system
with two Peltier-cooled XFlash silicon drift detectors
(SDD), which have an active area of 20 mm?® each. Mea-
surements were performed in variable pressure mode
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(30 Pa) on non-coated polished sections using an acceler-
ating voltage of 20 kV, a probe current of 50 pA in back-
scatter mode, and a working distance of 10 mm. A
combination of multipoint analysis and x-ray elemental
mapping was employed. Specific areas to be examined for
elemental composition with multi-point measurements
were carefully selected onto SEM backscattered electron
(BSE) images manually, making sure that the target areas
on each layer were representative of the entire layer.
Large particles of single pigments were measured individ-
ually for pigment characterisation purposes, and were
not included in the areas representative of the layers. The
x-ray elemental mapping was used to visualise the distri-
butions of the elements present in each layer. The acqui-
sition times (live time) for analysing each selected area
and for producing the elemental maps were 60 and 600 s,
respectively.

2.2 | Painting analysis by MA-XRF

The painting selected as a case study for this report is a
high format (43.5 cm x 27.5 cm) portrait of the artist Jens
Ferdinand Willumsen (1901, oil on cardboard). The por-
trayed artist is dressed in a dark jacket with a white shirt
and a dark bowtie, and gazes directly at the viewer with a
slight leftward turn of the head, casting a shadow from
the prominent nose (Figure 1). MA-XRF elemental map-
ping was performed at the front side of the painting in
the laboratory for Conservation and Art Technological
Studies (CATS) of the department of Conservation and
Scientific Research (BENA) at SMK using a Bruker
CRONO system developed by XGLab S.R.L. The instru-
ment consists of a measuring head with an Rh-target
microfocus x-ray tube (10 W, maximum voltage 50 kV,
maximum current 0.2 mA), and a 50 mm? SDD with
beryllium window (energy resolution <140 eV at Mn
Ka). The measuring spot can be varied by changing the
distance between the paint surface and the measuring
head. The instrument was operated at 50 kV and 60 pA.
The elemental two-dimensional (2D) mapping of the
painting’s surface was achieved through an automatic
XY-motorised stage with a 30 ms/pixel acquisition time
and a 1 mm step size in both the horizontal and vertical
directions. The acquired data cube was processed using
open-source PyMCA software (version 5.6.7).

2.3 | Data mining

2.3.1 | Data pre-treatment

All EDX data was recorded in a single data matrix com-
posed of 66 observations corresponding to the measured

FIGURE 1

Vilhelm Hammershei. Jens Ferdinand Willumsen,
Study for Five Portraits. 1901. Oil on cardboard, 43 cm x 27.5 cm.
KMS6793, National Gallery of Denmark (SMK), Copenhagen.
[Colour figure can be viewed at wileyonlinelibrary.com]

samples, and 3860 variables associated with the x-ray
energies (in the 0.7-20.0 keV range) of the sum spectrum
of each sample. Because the morphology of the ground
layers varies significantly across different samples, the
net intensities for each variable were normalised
(i.e., centred and scaled to mean 0 and standard deviation
1) within their respective ranges.

Pre-treatment of the XRF data cube involved fitting of
the spectra. This was necessary not only for reducing the
amount of data and to improve processing efficiency, but
also for removing noise-dominated signals of x-ray ener-
gies associated with absent elements or signals of
unwanted emission lines (e.g., those attributed to ele-
ments present in the ground layer), so as to narrow down
the clustering result to the pigments in the paint layer.
XRF data was recorded in a single data matrix composed
of 116,724 observations corresponding to the measured
points on the painting surface, and 14 variables associ-
ated with the net intensities of representative elements
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clearly distinguishable in terms of energy emissions, spe-
cifically: P K, Pb M, Cd L, K K, Ca K, Ba L, Ti K, Cr K,
Mn K, Fe K, Co K, Ni K, Cu K and Hg L. The selected
variables are assumed to contain significant information
about the pigments present in the paint layer, as con-
firmed by the respective elemental maps (Figure 2). Some
other spectral lines were discarded, namely Pb L and
Zn K, due to their association with the ground layer that
was already investigated by SEM-EDX, thus separating
their signals from those of the other elements present in
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the paint layer. No normalisation of the intensity values
was performed in the XRF data set. Both data sets were
then analysed using a combination of two approaches:
unsupervised machine learning by self-organising maps
(SOM) and cluster analysis by hierarchical clustering
(HCA). Both techniques were performed in the R (ver-
sion 4.2.2) environment using the kohonen (version
3.0.11),>° aweSOM (version 1.3)” and maptree (version
1.4-8)® packages on a standard mid-range laptop PC. An
R file containing the script for the SOM-HCA process can

Mn K

CrK

Net intensity

O T T [ 190
(counts/1000 s)

FIGURE 2

CoK

Ni K

Elemental distribution maps of the portrait of Jens Ferdinand Willumsen. The bottom row displays the elemental

distribution maps of the Zn- and Pb-based double ground layer alongside a cross section taken from the painting and imaged using optical
microscopy under UV radiation. The cross section shows the ground preparation composed of a lead white application (layer 1) and a
subsequent zinc white application (layer 2). [Colour figure can be viewed at wileyonlinelibrary.com]
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be accessed freely from this GitHub repository: https://
github.com/Gianluca-Pastorelli/SOM-HCA.git.

232 |
by SOM

Unsupervised machine learning

To increase the interpretability of each data set while pre-
serving the maximum amount of information, and to
enable the visualisation of their main characteristics,
SOM, a neural network-based unsupervised data visuali-
sation technique used to display high-dimensional data
sets in 2D representations,” was performed on both the
EDX and XRF data sets. The distinctive aspect of SOM is
that the topological features of the original input data are
preserved on the output map, meaning that similar obser-
vations are placed close together on the resulting SOM
grid. For instance, all samples containing elements char-
acteristic of earth pigments (e.g., Al, Si and Fe) will be
mapped to groups (called nodes or neurons) in the same
area of the grid. In general, the first step is to specify the
size of the training grid before training the SOM. This
can be achieved by utilising a heuristic formula proposed
by Vesanto et al.,'® which is currently used in the som_to-
pol_struct() function of Matlab's SOM Toolbox and allows
calculating the optimal number of nodes using the fol-
lowing Equation (1):

N=5x+/n, (1)

where N is the number of nodes in the SOM grid and n is
the number of observations in the data set. However, this
approach often leads to the creation of unnecessarily
large maps with a high number of empty nodes.
Although SOM is able to tolerate missing data and some
nodes might be empty due to incompletely defined data,
it is desirable to have an average of at least 5-10 observa-
tions per node for statistical signiﬁcance.“ Hence, too
many empty nodes may indicate that the map size is
too big for the number of observations, and progressively
reducing the grid size until only a handful of empty
nodes are present would make it possible to reach a suit-
able map size. An alternative approach that works in the
opposite direction is the growing self-organising map
(GSOM), a growing variant of the SOM.'* The GSOM
was specifically developed to address the issue of identify-
ing a suitable grid size in the SOM. It starts with a mini-
mal number of nodes (usually four) and grows new
nodes on the boundary based on a heuristic process. By
selecting a value called the spread factor before training
the model, the operator has the ability to control the
growth of the GSOM. In addition, there are multiple
ways of growing a SOM: either by readjusting the

positions of the given neurons defined by the best match-
ing unit (BMU) or by using newly produced neurons and
assigning them to a suitable location. In sum, GSOM
involves even more parameter tuning than normal SOM,
offsetting the advantage of not needing to choose the
map size. Moreover, only few implementations of
the GSOM algorithm are currently available for R and
Python; these implementations were evaluated by other
authors™ and the results were defined as unsatisfactory
in terms of performance. A final approach consists of
training the SOM at various grid sizes and evaluating
each map's quality to ascertain the optimal map size.'*
Several measures can be computed to assess the quality
of a SOM:

1. Quantization error (Qe), which measures map resolution

2. Topographic error (Te), which measures topology
preservation (i.e., close observations in the original
space should be mapped to close units in the SOM)

3. Kaski-Lagus error (KLe), which combines aspects of
the quantization and topographic errors (for relatively
small data sets, this metric is typically sufficient, obvi-
ating the need for additional measures'”)

4. Percentage of explained variance (%ev), which mea-
sures the proportion to which the model accounts for
the variation of a given data set (higher values indi-
cate better quality)

The characteristics of these measures are described in
detail elsewhere.”

In this work, we propose a method that combines all
these different approaches and identifies the optimal grid
size automatically, so that the analyst does not need to
specify the map size at the beginning of the process. First,
the maximum size of a square grid (rectangular grids
were not investigated in this study) is calculated using
Equation (1). Then, a growing iterative process is exe-
cuted, starting with a 2-by-2 hexagonal toroidal (i.e., the
edges of the map are joined) grid and adding a new row
and column at each step until the final map reaches the
maximum size calculated beforehand. During this pro-
cess, especially when working with particularly large data
sets, the number of iterations of each training step are set
to a relatively low value, for example, <500, to reduce
computation time, while all the other arguments such as
the learning rate are set to default. In addition, when
computer performance is limited, it is possible to incre-
ment the grid size according to a specific sequence of
numbers, for example, by two or five rows/columns each
time. The four quality parameters are measured for
each map produced during this process and each Qe, Te,
KLe and %ev are normalised within their respective
ranges of values. Next, a quality index (QI) that includes


https://github.com/Gianluca-Pastorelli/SOM-HCA.git
https://github.com/Gianluca-Pastorelli/SOM-HCA.git

PASTORELLI ET AL.

SPECTROMETRY— YV | LEY-L 2"

all the above-mentioned normalised quality measures is
calculated for each map using a heuristic formula as
shown in Equation (2):

QI=n%ev — (nQe + nTe+ nKLe), (2)

where n%ev, nQe, nTe and nKLe are the normalised
values of the four quality measures. As a result, the map
size that maximises the range between %ev and the sum
of the three errors indicates the optimal compromise
between all the quality measures of the SOM model, that
is, the ideal grid size corresponds to the highest
QL. Finally, the model is re-trained using exclusively the
optimal grid size, this time with a greater number of iter-
ations, for example, 500 or higher.

2.3.3 | Cluster analysis by HCA

Since SOM is primarily a data-driven dimensionality
reduction and data compression method, and not a clus-
tering technique, the nodes in the final map do not neces-
sarily isolate groups of observations with similar metrics,
especially when the number of SOM units is large. There-
fore, clustering may be performed on the SOM nodes to
group similar units and to facilitate quantitative analysis
of the map and the data.'” In general, clustering tech-
niques such as k-means'® present a problem that is simi-
lar to the manual identification of the optimal SOM
size—a suitable number of clusters must be selected in
advance and, in case, adjusted during a series of trials.
Different approaches to tackling this problem are avail-
able. For example, an estimate of the number of clusters
that would be suitable for discerning between similar
node groupings can be determined using a k-means algo-
rithm recursively for a range of cluster values and exam-
ining the plot of within cluster sum of squares (WCSS)
for an elbow-point.'” Alternatively, HCA, a method of
cluster analysis that seeks to build a hierarchy
of clusters,'® can be used. The Kelley-Gardner-Sutcliffe
(KGS) penalty function for a hierarchical cluster tree'
allows the optimal number of clusters to be estimated
automatically by selecting the lowest penalty. Ideally, the
clusters identified are contiguous on the map surface, but
this depends on the underlying distribution of variables.

2.3.4 | Cluster assignment

The two-stage procedure (first using SOM to produce the
nodes that are then clustered by HCA in the second
stage) described in the sections above was used to analyse
the EDX and XRF data sets. In either case, after the

clustering algorithm had been applied to the SOM map
for assigning clusters to each of the nodes, the generated
clusters were also assigned to the original observations in
the data set, to produce plots in the form of time series or
chemical maps.

3 | RESULTS AND DISCUSSION

3.1 | Preliminary data visualisation

In this study, SOM-HCA, a fully automated data mining
method, was tested for the interpretation of large x-ray
spectral data sets. By using the SOM method explained in
section 2.3.2, maps of 3-by-3 nodes and 40-by-40 nodes
were produced for the EDX and the XRF data sets,
respectively. There are a number of different plot types
available for visualising the quality of the generated
SOMs and to explore the relationships between the vari-
ables in the data sets. The node count plot (Figure 3a,c)
allows us to visualise how many observations are mapped
to each node on the map, and can be used as a measure
of map quality. Often referred to as the U-Matrix,” the
neighbour distance plot (Figure 3b,d) shows the distance
between each node and its neighbours—areas of low
neighbour distance indicate groups of nodes that are sim-
ilar, while areas with large distances indicate the nodes
are much more dissimilar. Both metrics showed that the
sample distributions in our data sets were relatively uni-
form, with no empty nodes, which would appear
coloured in grey, and not too many large values. The
EDX data set featured 22% of the nodes with more than
10 observations and 11% of the nodes with a neighbour
distance greater than 400 units, while the XRF data set
showed ~40% of the nodes with more than 100 observa-
tions and around 10% of the nodes with a neighbour dis-
tance >1000 units. The node weight vectors, or codes, are
made up of normalised values of the original variables
used to generate the SOM. Each node's weight vector is
representative of the observations mapped to that node.
By visualising the weight vectors across the map, patterns
in the distribution of observations and variables can be
observed. In the case of the EDX data set, these patterns
corresponded to individual sum spectra that were associ-
ated with their respective nodes (Figure 4a). According to
this visualisation, the signals of Ca, Zn and Pb appeared
to be especially intense, and one node exhibited a notably
high concentration of Ca. Finally, a SOM heat map
(Figure 5) allows the visualisation of the distribution of a
single variable across the map. Typically, a SOM investi-
gative process involves the creation of multiple heat
maps, and then the comparison of these heat maps to
identify interesting areas on the map. It is worth noting
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FIGURE 3 Node count
plots (a and c) and neighbour
distance plots (b and d) of the
EDX data set (a and b) and XRF
data set (c and d). The scale bar
shows minimum and maximum
values for each of the four plots.
[Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Node weight vectors (a) and assigned clusters (b) for the EDX data set. Each node in subfigure (a) displays a graphical
representation of the magnitude of each variable (i.e., x-ray energy) in the weight vector; when the number of variables is high, the default
visualisation of the weight vectors takes the form of a spectral pattern. The dots contained within each node in subfigure (b) represent the
observations that have been mapped to that particular node. The equivalent plots for the XRF data set are not shown because of poor

readability due to the higher number of nodes. [Colour figure can be viewed at wileyonlinelibrary.com]

that the individual observation positions do not change
from one visualisation to another, the map is simply
coloured by different variables. The heat maps generated
from the XRF data set were compared with the corre-
sponding elemental maps to validate a number of
hypotheses. For example, the heat maps of P and Ca
showed a direct relationship between those two elements,
indicating the use of bone black (mostly Ca,o(PO,)s(OH),)
in multiple areas of the painting; this assumption was
confirmed by comparing the elemental distribution maps
of P and Ca. Conversely, the heat map of Cu indicated
that pigments containing this element were applied spar-
ingly in specific areas, effectively assisting with the

challenge of a poorly contrasted Cu distribution map.
Moreover, although the elemental maps indicated a cor-
relation between the signals of Co and Ni, the heat maps
of these elements did not exhibit a similar relationship,
showing that a Co-based pigment was applied in a very
selective way and suggesting that the presence of Ni
could potentially be an artefact. Finally, as evident from
the elemental maps, it is often challenging to distinguish
the signals of Ti and Ba. However, the heat maps
revealed that the presence of Ti is significantly more
prominent in specific, small areas of the painting.

The HCA algorithm was applied to the SOM models
for assigning a specific cluster to each node, with the
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SOM heat maps showing the distribution of individual variables (i.e., elements spectral lines) across the XRF map. Heat

maps related to the EDX data set are not shown due to the higher number of variables. [Colour figure can be viewed at

wileyonlinelibrary.com]

number of clusters being determined based on the mini-
mum value of the KGS function. In the case of the EDX
data set, three clusters were used, while for the XRF data
set, seven clusters were selected. These clusters were sub-
sequently assigned to the original observations within
each data set, allowing for exploratory visualisation. One
noteworthy observation is that one of the three clusters
in the EDX data set consisted of a single node (Figure 4b,
green cluster), which corresponded to the weight vector
showing a particularly strong Ca signal.

3.2 | EDX data visualisation

A sum spectrum was produced for each of the three EDX
clusters, while the paintings grouped in each cluster were

plotted against a timeline (Figure 6). In this way, the time
distribution of the paintings containing specific types of
ground materials could be visualised. The results showed
that apart from cluster 3, in which the ground layer is
composed exclusively of calcium carbonate, the other
two clusters are characterised by lead white-based ground
layers in combination with other materials such as zinc-
based pigments (e.g., zinc white and lithopone), alumino-
silicates and calcium carbonate. The difference between
these two groups lies in the ratio between the spectral
intensities of lead and the other elements, indicating that
cluster 2 corresponds to a recipe with a relatively higher
concentration of lead white compared with cluster 1. The
majority of the paintings (44) aligned with cluster 1, while
fewer works (17) correlated with cluster 2, suggesting
Hammershei's preference for the former type of ground
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Sum spectra representing the composition of different ground types as determined by the calculated EDX clusters (left),

alongside a chronological arrangement of paintings classified within each cluster (right). [Colour figure can be viewed at

wileyonlinelibrary.com]

due to reasons that may range from availability to cost.
However, there seems to be no clear boundary in terms
of time between the use of one type of ground and the
other, showing that both types were used concurrently
throughout Hammershoi's career. Only one painting
(a self-portrait executed in 1891) associated with cluster
3, differing from all other paintings of the set. This may
be explained by noting that at that point of time,
Hammershoi was based in Paris, where he may have had
access to different materials. Without the proposed SOM-
HCA method, reaching these conclusions would have
required manually inspecting and comparing a large
number of spectra, which would have been a time-
consuming and laborious process. Our approach provided
a more efficient and streamlined analysis, allowing us to
focus on the most relevant information and resulting in a
more accurate and reliable characterisation of the data.

3.3 | XRF data visualisation

A different plotting method was used to automatically
reduce the XRF data cube to a collection of distinct
images (cluster maps) in which groups of pixels share
similar spectra, making it possible to identify the mate-
rials that compose the paint layer more accurately. It is
worth noting that the clustering output generated by the

SOM-HCA method relies entirely on the statistical char-
acteristics of the input data. Therefore, the resulting clus-
ters may not always align with distinct partitions in the
real-world context. One potential approach to overcome
this limitation is to analyse the internal features and
properties of the data elements that belong to each clus-
ter. By conducting an in-depth examination of the intra-
cluster characteristics, it is possible to identify underlying
patterns or relationships that are not readily apparent
from the clustering output alone. For that reason, each
cluster map was accompanied by a box-and-whisker plot
showing the relative abundances of the elements that
characterise that particular cluster (Figure 7). The results
indicated that the paint layer is composed of lead white
(2PbCOs; - Pb(OH),, which is present in relatively high
amounts in all clusters), bone black, iron-based earth pig-
ments, vermilion (HgS), cadmium yellow (CdS) and
cobalt blue (CoO - Al,0O5). Cluster 1 was mostly associ-
ated with parts of the background and the edges of the
dark jacket, which were primarily produced with a mix-
ture of earth pigments (containing Fe, but with very low
levels of K and Mn, which may not be readily apparent
from the elemental maps), bone black and vermilion. A
similar composition characterised cluster 2, but the
above-mentioned pigments were used in higher amounts
to paint the darker areas of the jacket and the outline of
the bowtie. The composition of the dark bowtie was
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described by cluster 3, showing, apart from bone black, a
substantial presence of Fe-based earth pigments. Cluster
4 showed that lead white mixed with variable amounts of
bone black, cadmium yellow and cobalt blue is present in
the hair and facial hair, in the shadow cast by the nose
and in the background. Cluster 5 was dominated by Pb,
which is present in great amounts as lead white in the
off-white shirt and in the skin tone together with little
amounts of vermilion. Cluster 6 was very similar in distri-
bution and composition to cluster 3, but was correlated
to retouching areas, as suggested by higher intensities of
the signals of Fe, Cu and Cr. Cluster 7 was probably the
most notable, since it only included the eyes of the figure,
which were painted with abundant cobalt blue. Overall,
the intensities of the different elements attributed to each
cluster revealed that the muted hues in this composition,
especially in the background and in the artist's outfit with
their seemingly reduced tonality, were produced not just
by mixing white, black and brown pigments, but also by
adding other paints such as vermilion, cadmium yellow
and cobalt blue. This is not very obvious in the single-
element maps (Figure 2), where the broad dynamic range
required for display of the distribution of an element
results in the omission of low intensity areas. The cluster
maps associated with the statistics of their respective
chemical properties enabled us to identify the main ele-
mental associations in a more efficient and accurate man-
ner, without the need to manually overlay and compare a
larger number of elemental maps. This provided a more
comprehensive representation of the association of the
different elements as well as a more precise characterisa-
tion of the data.

3.4 | Comparison with other data
mining techniques

One may wonder how these results compare to those
obtained using other well-established data mining
methods. Principal component analysis (PCA) and k-
means, two methods for analysing large data sets con-
taining a high number of features per observation, which
are commonly used in heritage science studies®"** were
tested on the EDX and XRF data sets, respectively.
Unlike SOM-HCA, PCA did not increase the interpret-
ability of the EDX data while preserving the maximum
amount of information, as the visualisation of the multi-
variate data prevented any groups of specific ground
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FIGURE 8 PCA score plot of the EDX data set. Percent values

in parentheses represent explained variance.

materials from being identified (Figure 8). K-means clus-
ter analysis generated a clusters map that is fairly similar
to the SOM-HCA clusters map (Figure 9). However, as
discussed above, the k-means algorithm requires the
number of clusters to be specified in advance, which is
considered one of the biggest drawbacks of this method;
in this case, we used the number of clusters generated by
the SOM-HCA method. Furthermore, the k-means
method prefers clusters of approximately similar size, as
it will always assign an object to the nearest centroid.
This often leads to incorrectly cut borders of clusters,
which in Figure 9 is very visible, for example, in the out-
lines of the facial features and the areas corresponding to
the eyes.

4 | CONCLUSIONS

In this work, we aimed at developing and testing a fully
automated data mining process for extracting and discov-
ering patterns in large x-ray emission spectroscopy data
sets obtained from SEM-EDX and MA-XRF analyses dur-
ing a technical art historical systematic study of paintings
by Vilhelm Hammershei. The proposed method com-
bines SOM, an artificial neural network-based type of
unsupervised machine learning, and HCA, a cluster anal-
ysis technique, which were tweaked in such a way as to
address the problem of specifying the number of nodes
and clusters in advance. The method helped produce
clusters related to specific chemical compositions, which

FIGURE 7

Cluster maps of the portrait of Jens Ferdinand Willumsen with corresponding elements spectral lines intensities. In each

box-and-whisker plot, the x-axis represents energy (keV) and the y-axis represents net intensity (counts/1000 s). The box-and-whisker for

each selected spectral line displays the median, interquartile range, minimum-maximum range, and outliers in its net intensity.
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FIGURE 9 Comparison
between the distributions of the
clusters identified by SOM-HCA
(a) and k-means (b) in the XRF
data set. [Colour figure can be
viewed at
wileyonlinelibrary.com]

enabled efficient pigment identification in the ground
layers of a large number of paintings as well as in the
paint layer examined at the surface of one selected paint-
ing. The process was shown to perform well when com-
pared with other well-established, but limited, data
mining methods such as PCA and k-means, and it
allowed reducing the time necessary for the interpreta-
tion of the results significantly. In summary, the pro-
posed approach for interpreting both the EDX and XRF
data sets showed considerable potential to enable auto-
matic, accurate and time-efficient exploration of x-ray
spectral data, which will facilitate the analysis of the
extensive results collected during the ViHDA project,
allowing for the generation of new information that will
be made available in an open access digital resource. As
SOM can also be used for supervised machine learning,
future research will focus on validating the performance
of the SOM-HCA method by creating simulated data sets
based on mock-ups with well-defined properties. This
will help in evaluating the accuracy and robustness of the
technique further, and may lead to the development of
even more efficient and reliable versions of the proposed
method. The next phases of the VIHDA project will also
investigate the use of the proposed SOM-HCA method on
other types of data, such as complementary spectral data
in the ultraviolet-visible-infrared range for the analysis
of organic components, to provide more comprehensive
details regarding Hammershoi's technique across all the
examined artworks. In addition to finding trends in
the use of materials, it will be possible to correlate the
obtained chemical information with other properties
observed on Hammershei's paintings such as formats,
canvas thread counting, state of preservation and compo-
sition. Since such evidence-based knowledge will be
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¢ Cluster
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®:
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essential not only to understand the significance of
Hammershpi's works, but also to determine authenticity,
provenance and dating, this information will be a valu-
able and necessary resource for assisting museums and
private individuals in the assessment of the quality
and geographical/temporal location of artworks that
could have originated from Hammershei's hand.

ACKNOWLEDGEMENTS

The authors are grateful to Troels Filtenborg, Sofie
Wikkelso Jensen and Oscar Holm (National Gallery of
Denmark) for technical assistance in the collection and
preparation of the samples used in this research, and the
Royal Danish Academy - Institute of Conservation for
the use of the SEM-EDX instrumentation. The authors
also thank Pauline Lehmann Banke and Loa Ludvigsen
(National Gallery of Denmark) alongside independent
researchers Jorgen Wadum and Annette Rosenvold Hvidt
for discussions. Finally, the authors gratefully acknowl-
edge funding from the Augustinus Foundation and the
New Carlsberg Foundation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

ORCID

Gianluca Pastorelli
1952

Annette S. Ortiz Miranda
9223-8099

Anne Haack Christensen
7934-8832

https://orcid.org/0000-0001-6926-
https://orcid.org/0000-0001-

https://orcid.org/0000-0001-


https://orcid.org/0000-0001-6926-1952
https://orcid.org/0000-0001-6926-1952
https://orcid.org/0000-0001-6926-1952
https://orcid.org/0000-0001-9223-8099
https://orcid.org/0000-0001-9223-8099
https://orcid.org/0000-0001-9223-8099
https://orcid.org/0000-0001-7934-8832
https://orcid.org/0000-0001-7934-8832
https://orcid.org/0000-0001-7934-8832
http://wileyonlinelibrary.com

w | wi LEY—speEcTROMETRY

PASTORELLI ET AL.

REFERENCES

[1] P. Vad, K. Tindall, Vilhelm Hammershoi and the Danish Art at
the Turn of the Century, Yale University Press, New Haven
1992.

[2] A. Bintintan, M. Gligor, I. D. Dulama, S. Teodorescu, R. M.
Stirbescu, C. Radulescu, Rev. Chim. 2017, 68, 847.

[3] V. Renda, V. M. Nardo, G. Anastasio, E. Caponetti, C. S. Vasi,
M. L. Saladino, F. Armetta, S. Trusso, R. C. Ponterio, Spectro-
chim. Acta, Part B 2019, 159, 105655.

[4] S. Kogou, L. Lee, G. Shahtahmassebi, H. Liang, X-Ray Spec-
trom. 2021, 50, 310.

[5] R. Wehrens, L. M. C. Buydens, J. Stat. Softw. 2007, 21(5), 1.
https://doi.org/10.18637/jss.v021.i05

[6] R. Wehrens, J. Kruisselbrink, J. Stat. Softw. 2018, 87(7), 1.
https://doi.org/10.18637/jss.v087.i07

[7] J. Boelaert, E. Ollion, J. Sodoge. aweSOM: Interactive Self-
Organizing Maps [Online]. https://CRAN.R-project.org/
package=aweSOM (accessed: 16 June 2023).

[8] D. White, R. B. Gramacy. maptree: Mapping, Pruning, and
Graphing Tree Models. 2022 [Online]. https://CRAN.R-
project.org/package=maptree (accessed: 16 June 2023).

[9] T.Kohonen, Self-Organizing Maps, Vol. 30, Springer Science &
Business Media, Heidelberg 2012.

[10] J. Vesanto, E. Alhoniemi, IEEE Trans. Neural Netw. 2000,
11, 586.

[11] T. Kohonen, MATLAB Implementations and Applications of
the Self-Organizing Map, Vol. 177, Unigrafia Oy, Helsinki,
Finland 2014.

[12] S. Delgado, C. Gonzalo, E. Martinez, A. Arquero. in IGARSS
2004. 2004 IEEE Int. Geosci. Remote Sens. Symp., Vol. 1, 2004.

[13] R. S. Adeu, K. R. Ferreira, P. R. Andrade, L. Santos. in Proc.
XX GEOINFO, November 11-13, 2019, SP, Brazil 2009.

[14] D. L. B. Fortela, M. Crawford, A. DeLattre, S. Kowalski, M.
Lissard, A. Fremin, W. Sharp, E. Revellame, R. Hernandez, M.
Zappi, Clean Technol. 2020, 2, 156.

[15] S. Kaski, K. Lagus, ICANN 1996, 96, 809.

[16] E. W. Forgy, Biometrics 1965, 21, 768.

[17] A. Alghamdi, G. Hu, H. Haider, K. Hewage, R. Sadiq, Sustain-
ability 2020, 12, 4422.

[18] F. Nielsen, Introduction to HPC with MPI for Data Science,
Springer, Cham 2016, p. 195. https://doi.org/10.1007/978-3-
319-21903-5

[19] L. A. Kelley, S. P. Gardner, M. J. Sutcliffe, Protein Eng., des.
Sel. 1996, 9, 1063.

[20] A. Ultsch, in Proc. Int. Neural Netw. Conf. (INNC-90), Paris,
France, Vol. 1 (Eds: B. Widrow, B. Angeniol), Kluwer, Dor-
drecht, Netherlands 1990, p. 305.

[21] M. Albrecht, O. de Noord, S. Meloni, A. van Loon, R. Haswell,
Herit. Sci. 2019, 7(1), 1.

[22] H. Chopp, A. McGeachy, M. Alfeld, O. Cossairt, M. Walton, A.
Katsaggelos. Denoising fast x-ray fluorescence raster scans of
paintings [Online]. http://arxiv.org/abs/2206.01740 (accessed:
16 June 2023).

How to cite this article: G. Pastorelli,

A. S. Ortiz Miranda, A. H. Christensen, X-Ray
Spectrom 2024, 53(5), 392. https://doi.org/10.1002/
Xrs.3388



https://doi.org/10.18637/jss.v021.i05
https://doi.org/10.18637/jss.v087.i07
https://cran.r-project.org/package=aweSOM
https://cran.r-project.org/package=aweSOM
https://cran.r-project.org/package=maptree
https://cran.r-project.org/package=maptree
https://doi.org/10.1007/978-3-319-21903-5
https://doi.org/10.1007/978-3-319-21903-5
http://arxiv.org/abs/2206.01740
https://doi.org/10.1002/xrs.3388
https://doi.org/10.1002/xrs.3388

	Interpretation of x-ray spectral data using self-organising maps and hierarchical clustering: A study of Vilhelm Hammershøi...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Sample analysis by optical microscopy and SEM-EDX
	2.2  Painting analysis by MA-XRF
	2.3  Data mining
	2.3.1  Data pre-treatment
	2.3.2  Unsupervised machine learning by SOM
	2.3.3  Cluster analysis by HCA
	2.3.4  Cluster assignment


	3  RESULTS AND DISCUSSION
	3.1  Preliminary data visualisation
	3.2  EDX data visualisation
	3.3  XRF data visualisation
	3.4  Comparison with other data mining techniques

	4  CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


